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Abstract

In this work, we illustrate the basic development of the constrained molecular dynamics applied to the N-body prob-

lem in nuclear physics. The heavy computational tasks related to quantum effects, to the Fermionic nature of the system

have been resolved out by defining a set of transformations based on the concept of impulsive forces. In particular, in

the implemented version II of the constrained molecular dynamics model the problem related to the non-conservation

of the total angular momentum has been solved. This problem affects other semi-classical microscopic approaches due

to the ‘‘hard core’’ repulsive interaction and, more generally, to the usage of random forces. The effect of the restored

conservation law on the fusion cross-section for the 40Ca + 40Ca system is also briefly discussed.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the present work we will try to illustrate, with concrete examples, the strategy used to solve the com-

putational task related to the quantum N-body problem. In particular, we will propose a solution based on

the concept of the constrained dynamics and we will focus on the treatment of the many-body problem for

nuclear-systems. In the following, we will give an introduction by briefly explaining the main features of
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such complex systems and some of the crucial problems that should be solved to obtain a reliable

description.

Nuclear systems are under different aspects unique in nature. In such systems can coexist different as-

pects of the physical laws whose interplay, in general, cannot be neglected as instead can happen for other

complex systems. Nuclei are complex systems made of an ensemble of N nucleons whose number can vary
from some units up to several tens of protons and neutrons. Therefore, they are in general not so simple

that the particles follow the behaviors suggested by the few body models, and not so large and so complex

that they follow the features suggested by the conventional statistical mechanics or by the hydrodynamics

models [1].

Nuclei are sub-atomic objects and therefore in a wide range of energies their behavior is strongly dom-

inated by quantum effects. Their constituents are strong interacting fermions through the short-range nu-

clear interaction, but they interact also through the long-range proton–proton Coulomb repulsion. Still, the

force, which is responsible for their stability and for the evolution of enormous objects like stars, is not well
known, especially at high energy when pieces of hot and compressed nuclear matter can be produced in

extreme conditions. Up to now, these forces are not derived from a general theoretical frame. This obvi-

ously on one hand makes still necessary and intriguing the study of such systems, but on the other one adds

an uncertainty to the structure of the related many body Hamiltonian.

The models that can aim to describe such complex situation, especially around and above the Fermi en-

ergy, can be only N-body approaches (N being the number of nucleons belonging to the system). As hap-

pens for all the N-body approaches, two main roads can be followed.

One of these can be derived from the elegant hierarchy of kinetic equations developed in the early twen-
tieth century. This approach deals with the theoretical N-body distribution function FN (1,2, . . .,N, t) which

gives the probability that N nucleons occupy the region of the phase space r1, p1, r2, p2, . . ., rN, pN at the

time t (with bold symbols we will indicate vector quantities). Up to now, the kinetic equations that have

been simulated in real three-dimensional problems are the Boltzmann equation, which represents the first

equation of the hierarchy in the classical case, and the BUU and BNV [2,3] corresponding approaches

including some quantum corrections. Nevertheless these equations deal with F1(1, t) representing the prob-

ability that one of the N-nucleons has coordinates r1,p1 at time t, independently from the position of the

other, N � 1 particles. It therefore gives quite limited information with respect to FN. By definition F1

can give predictions on the averages of one-body quantities (mean field-approach) but it cannot describe

N-body correlations that are decisive in studying, for example, deviations from the averages or phenomena

like the cluster formation processes.

Another much more pragmatic road to follow, which can take into account N-body correlations, gives

arise to the so-called molecular dynamics approaches. The above mentioned quantity FN, in the semi-

classical approximation scheme, has to be understood as an ensemble averaged probability computed on

many replications (in the theoretical limit an infinite number) of the same systems characterized by a total

energy E, total angular momentum L, total mass N, total charge Z or other quantities which define the ini-
tial macroscopic state. It is not difficult to think that for an N-body system many microscopic configura-

tions can describe the same total system in the same macroscopic state. This happens from a classical

point of view and at high excitation energy also from a quantal point of view. Therefore, in this situation,

in the classical case for example, if we choose a kind of nucleon–nucleon interactions we can solve with the

computer the Newtonian equations of motion and follow in time the single realization or event. Each of

these events will have a proper history and if their number is enough large we can aim to have a good esti-

mation of the true F1, F2, . . ., FN. The concept between model and simulation with the computer therefore

becomes closely connected. This connection becomes also stronger when particular hypothesis are neces-
sary to be done to make the problems solvable numerically in a reasonable time. In fact to compare results

with experiments we need to ‘‘compute’’ as many events as possible. In such way we can neglect the errors

related to the statistics of simulations, and this should be done as fast as possible to make practicable our
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investigations. In the following, we will illustrate a recent development of the molecular dynamics ap-

proach, which is based on the concept of constraint. In the constrained molecular dynamics approach

(CoMD) [4,1], we force our equations of motion to satisfy two quite fundamental conditions that have been

undertaken in the past molecular dynamics models.

The first condition is directly related to the quantum nature of the system. We force the average occu-
pation numbers �f i to satisfy the condition �f i 6 1 at each time step, according to the Pauli principle. There-

fore, in the model-simulation our system can reflect the properties of a quantum liquid drop. This crucial

point [4], and the main ingredients of the model will be illustrated in Sections 2–5.

Another problem is related to the strong repulsive character of nuclear interaction at short distance and

more generally to the usage of stochastic process in dynamical models. The strategy used to overcome the

related numerical problem in most of the transport simulation codes gives arise to a dynamical evolution

that does not preserve the total angular momentum. In Section 6, we will discuss in some detail this point

and we will present a numerical algorithm able to restore this fundamental conservation rule. In Section 7
the related effects on the fusion cross-section and binary process yields induced on the 40Ca + 40Ca system

will be also illustrated.
2. Molecular dynamics models in nuclear physics

As observed in the previous section, one of the crucial problems in the molecular dynamics approach for

fermionic system is to reproduce the correlations induced by the Pauli principle. To understand better the

way in which we have introduced such correlations we briefly recall the main ingredients of the semi-

classical molecular dynamics approaches in nuclear physics [5,4]. In this approach, each nucleon belonging

to one possible replication of our N-body system is represented by a Gaussian distribution function [5,4]:
fiðr; pÞ ¼
1

ð2prrrpÞ3
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where rr and rp represent the dispersions in the configuration and in the momentum space, respectively.

Starting from the above distribution, we can define the occupation density in phase space as [4]
�f i �
X
j

dðsi � sjÞdðsi � sjÞ
Z
h3
fjðrj; pj; hrii; hpiiÞd3rj d

3pj: ð2Þ
The coordinates si and si represent the nucleon spin and isospin (nuclear charge) projection quantum num-
ber. The integral is performed in a hypercube of volume h3 in the phase-space centered around the point

(Æriæ, Æpiæ) with size
ffiffiffiffiffiffiffi
2p�h
rrrp

q
rr and

ffiffiffiffiffiffiffi
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q
rp in the r and p spaces, respectively. The N-body distribution function

for each replication k in phase space is expressed as the direct product:
f N ;kð1; 2; . . . ;N ; tÞ ¼ f1ðr1; p1Þ � f2ðr1; p2Þ � � � fN ðrN ; pN Þ: ð3Þ

Each realization is identified by the N-uplet of coordinates in phase space that determine the positions of

the N Gaussian. The link between the previous expression and the N-body distribution function is clearly
obtained through the ensemble average procedure on a very large number of realizations M of the same

system [1]:
F N ð1; 2; . . . ;N ; tÞ ¼ lim
M!1

XM
k¼1

f N ;k

M
: ð4Þ
This expression can be made symmetric for N identical particles by averaging over the permutations P

related to the N-uplet of coordinates in phase space. For each replication the equations of motion for



406 M. Papa et al. / Journal of Computational Physics 208 (2005) 403–415
the wave packet centers Æræi, Æpæi related to fi(r,p) are derived using the time-dependent variational principle

[5], which gives
h_rii ¼
oH
ohpii

; h _pii ¼ � oH
ohrii

þ Ci: ð5Þ
The Hamiltonian H consists of the kinetic energy and the two-body effective interaction:
H ¼
X
i

hpi2i
2m

þ 1

2

X
i;j 6¼i

V ij þ 3
r2
p

2m
; ð6Þ
where Vij represents the two body interaction between particles i and j. It is obtained by folding the effective

nucleon–nucleon interaction with the nucleon distribution. More details in the case of a Skyrme interaction

can be found, for example, in [4,5].

The quantity Ci represents a random impulsive force which simulates by a scattering process, the effect of

the nucleon–nucleon repulsive short-range interaction. At each time step, if two nucleons are within an
interaction radius Rint they can scatter with a probability determined by the related cross-section rnn
and the Pauli blocking attenuation factor Pb evaluated for the final state [2,3,5,4]. A correct evaluation

of Pb can be obtained only if the numbers �f i defined in Eq. (2) are at each time less then or equal to 1.

It is easy to see that the illustrated scheme is essentially classical. There are no reasons for the Pauli con-

dition to be satisfied. As it was shown in [4] after some tens of fm/c large deviations from the Pauli require-

ment (even if the nuclei are correctly initialized) affect about 50% of the total system.

To solve the above problem, more complex approaches have been developed [6,7]. In these cases the trial

wave function, which represents the many body system, is given by the anti-symmetric product of wave
packets. This rigorous way to solve the problem, introduce a great amount of complexity. While the struc-

ture of the equations of motion (5), with two-body interactions, implies a N2 dimensionality, the use of the

anti-symmetric structure for the total wave function increases the dimensionality to N4. Normally therefore

some approximations are necessary to work out calculations like the so-called ‘‘physical coordinate approx-

imation’’ [7]. It appears clear that, as an example, for a nucleus with 200 nucleons, an exact anti-symmetric

scheme should naturally produce a computation speed 4 · 104 slower with respect to a scheme based on the

direct product. This is the reason why in our CoMD approach we solve the Pauli principle requirement by

keeping the N2 dimensionality.
We want to conclude this section by observing that the lack of the Pauli principle has also catastrophic

consequences on the structure of the ‘‘ground states’’ (g.s.) of nuclei. It is easily understood that the Ham-

iltonian given in Eq. (7) admits a minimum energy state for which the total effective kinetic energy (first

term in Eq. (6)) related to the centers of the wave packet is zero. In this case the total energy is given by

the potential energy plus the bias term
3r2p
2m which is constant. In other words, in this case one obtains a

g.s. that resembles stones rather that quantum liquid drops as should be the case of nuclei. Consequently,
the approach insofar illustrated can describe only nuclear collisions for very short times or at very high

excitation energy, well above the Fermi energy, when the Fermi motion plays a minor role in the dynamics.
3. Introduction to the CoMD approach

In the CoMD approach, we maintain the structure of a direct product for the N-body distribution but we

change the equations of motion in this way:
h_rii ¼
oH
ohpii

; ð7Þ
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h _pii ¼ � oH
ohrii

þ Ci þ ki þ Pi þ Ri; ð8Þ

�f i 6 1: ð9Þ
The meaning of the different terms k, P and R are explained in the following. They in general represent

transformations of the centroid of the Gaussian nucleonic distribution function. To simplify the notation
the angled brackets of these variables will be omitted in the subsequent notations.

The set Pi represents impulsive forces, introduced for the first time in [4], which perform a multi particle

scattering for the generic particle i whenever the related Pauli condition is violated. It is normally achieved

through a series of two-body scatterings. More precisely, the algorithm is the following: for each particle i

we define an ensemble of nearest particles Ni identical to i within the distance 3rr3rp in the phase space. If in

a time step the average occupation number �f i > 1 (see Eq. (2)) a loop is performed in the algorithm over the

particles belonging to the ensemble Ni and, in the centre of mass of the generic couple i, k of particles, the

momenta are changed according to the following transformation:
pi ¼ �pk ! p0i ¼ �p0k; ð10Þ

jpij ¼ jp0ij: ð11Þ
The direction of the exchanged momentum Dp is chosen in a random way according to an isotropic distri-

bution with respect to the initial direction pi. After this transformation the �f i is evaluated again, if it is less

than or equal to one, the new coordinates are accepted and the loop is stopped. If this is not the case, the

coordinates of the involved particles are set to the old values and other attempts will be performed. Nor-

mally two or at most three iterations are sufficient to satisfy the constraint on the atypical particle. Obvi-

ously, the algorithm is in a general loop running over all the particles and it can happen that one particle

suffers multi-scattering process. The procedure described keeps the dimensionality N2 that is related to the

two-body character of the particle interaction. As can be easily deduced from the above relations, the trans-
formations represent a series of elastic scattering processes that can mimic the repulsive character of the

correlations associated to the anti-symmetric wave functions (exchange forces and vanishing of the N-body

wave function at short distance in phase space).

We observe that the Montecarlo procedure illustrated, which affects on average 10% of the total number

of nucleons per time step, satisfies the Pauli requirement in a quite general way without introducing others

correlations not directly related the Pauli principle itself.

As a visual example of the action of the described procedure, in Fig. 1 we sketch a situation in which

eight nucleons with same charge occupy close positions in phase space. The dashed circles represent the pro-
jection of a spherical volume h3 in momentum space. The arrows indicate the intrinsic spin. On the right,

the occupation numbers related to some particles are also shown. It is clear that the configuration shown in

the upper panel is forbidden. In particular, the nucleon 1 is very close to another one a 0 with same spin. This

kind of configuration appears spontaneously during the time evolution of the system if the Pi forces are

inactive.

The bottom panel represents a possible configuration reached after the action of P. The related forces

perform a rotation (or scattering) in momentum space between the particles 1 and a 0 followed by a second

rotation between 1 and 2. The new configuration is now in agreement with the constraint on the occupation
numbers. In particular it is equivalent to the previous one concerning the potential energy (we do not

change their positions ri and we use a momentum independent interaction) and the kinetic energy, therefore

the total energy is exactly conserved. Obviously, the multi-particle transformation preserves the total

momentum (action and reaction forces).



Fig. 1. Typical configuration for eight nucleons with same charge in momentum space before (upper panel) and after (bottom panel)

the action of the transformation P. The dashed circles represent the projection of a spherical volume h3 in momentum space. On the

right the values of the occupation numbers �f for different nucleons are also reported.
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4. Searching for ‘‘ground state configurations’’

As happens for all problems that involve constraints, the depicted strategy can be successful in to obtain-
ing the solution of the problem at each time step, if the initial conditions of the system satisfy the con-

straints. The problem of the proper initial conditions involves the structure of nuclei in the ‘‘ground

state’’ (g.s.) configurations.

For this purpose we make effective the small parameters ki (jkij. 0.001) which have the meaning of fric-

tion forces. We start with nucleons distributed in a hyper sphere of radius R and PF (Fermi momentum),

after which, we follow a localized procedure of ‘‘cooling’’ and ‘‘warming’’ coupled with the constraint. At

each time step, if for a particle k �f k < 1, then for all the neighboring identical particles, ki will be set to a

negative value (cooling). On the contrary case (�f k P 1), ki will be set positive. This procedure, applied for
time intervals typically of some hundred of fm/c will, decrease the total energy to the minimum value. After

this stage follows a ‘‘stabilization’’ phase (the k coefficients are set to zero). The microscopic configurations

that are accepted as good replications for the g.s. are those which are stable (no particle emission and nuclear

radius stability within 10%) for a time interval of the order of some thousand of fm/c. In [4] the properties of

the ground state of large class of nuclei with mass number ranging from N = 30 to 197 have been studied to

establish the model parameter for the two body interaction (including also the value of the Gaussian param-

eters rr = 1.13 fm, rp = 0.43�h) in order to obtain an average binding energy of 8 MeV/nucleon and nuclear

radii R = 1.2 Æ N1/3 (within 10%) and with an average compressibility of 200 MeV. The possibility to obtain
stable configurations with the right macroscopic properties of nuclei it is directly linked with the properties

of the effective interaction used and therefore with the dynamics related to the first term of Eq. (2).

As an example of the results obtained for the g.s. configurations, we show in Fig. 2, as open dots, the

average occupation function F(EK) of the kinetic energy EK related to the centers of the Gaussian



Fig. 2. With empty circles we show, as function of the nucleon kinetic energy, the average occupation function f(Ek) for the obtained

‘‘ground state’’ configurations of the 112Sn nucleus. The others symbols are referred to the obtained distribution after a time interval Dt
of dynamical evolution with and without the action of the constraint (see the legend).
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distribution for the 112Sn nucleus. These results are obtained after a ‘‘cooling’’ and ‘‘warming’’ procedure

for a time interval of 650 fm/c. The average is computed on 100 configurations. The close connection to a

Fermi distribution is clearly evident. Deviations from the typical stepwise shape, which characterizes the

Fermi distribution at zero temperature, are related to the finite size effect of the investigated system and

to the presence of N-body correlations arising from the two-body short- and long-range (Coulomb) inter-

action. The error due to the finite number of configuration is of the order of ±15% at energies lower than

10 MeV. At energy higher than 30 MeV the errors are greater. They are not shown in the picture to make
the comparison clearer.

As previously observed, a simple ‘‘cooling procedure’’ without applying the coupling procedure with

condition on the occupation numbers, obviously will produce a d distribution centered at zero correspond-

ing to a configuration in which the total effective kinetic energy related (first term in Eq. (6)) is zero.

In the same figure we show, as full dots, the F(EK) values related to the normal constrained dynamical

evolution, without frictional forces, after 1500 fm/c. The distribution is very similar to the previous one and

shows that the selected configurations can represent good g.s. samples. It demonstrates also that the algo-

rithm is able to preserve the features of the Fermonic system during the time evolution.
Finally, with crossed points we show, starting always from the same configurations, the distribution

obtained after 300 fm/c when the constraint on the occupation number �f i is suppressed. It is clearly evident

that in this case the Fermi-like behavior is not maintained, rather it appears to have a Boltzmann-like shape.
5. CoMD II calculations in nucleus–nucleus collision

In this section we present, as an example, some results obtained for 40Ca + 40Ca collisions at 35 MeV/
nucleon. In particular, by comparing the results obtained with experiment, we aim to emphasize the role

of the constraint on the dynamics (see also [4]). The nucleus–nucleus collision is simulated by taking into

account the contribution related to an impact parameter window b from 0 to 8 fm. The initial



Fig. 3. Comparison [4] between the experimental isotope distribution measured for 40Ca + 40Ca system at 35 MeV/nucleon [8] and

theoretical prediction without the constraint on the Pauli prescription during the dynamical evolution.
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configurations of the two 40Ca nuclei are always good g.s. configurations obtained as described in the pre-

vious section. In Fig. 3 we show the charge distribution for the system under study in which the dynamical

evolution is realized without the constraint. In the same figure, the squared symbols represent the experi-

mental results. The calculations are plotted at t = 3000 fm/c and t = 300 fm/c. They show essentially the
binary character of the reaction while the experimental data show a significant production of intermediate-

mass fragments (IMF with Z > 2). The binary behavior demonstrates a transparency effect in the calcula-

tions. The typical ‘‘U’’ shape is due to a large production of projectile- and target-like fragments formed in

the first moments (bottom panel) of the interaction. After the formation, the two excited systems cool by

emitting particles and the main bump in the charge distribution is displaced through lower charge values.

This kind of ‘‘transparency’’ is caused by the lack of nucleon–nucleon collision (term C in Eq. (5)) due to

the overcrowding of the phase space (see also Fig. 2, star symbols), which generate a strong suppression

(about a factor 3) of the nucleon–nucleon cross-section (Pauli blocking factor). In Fig. 4 we display the
same kind of comparison with calculations which include the constraint. The calculations are now in sat-

isfactory agreement with the data. The increased rate of collisions produces a larger ‘‘stopping’’ and the

related compression-decompression effect. This effect, in turn, gives rise to mechanical instability generated

by the nucleon–nucleon field leading to the multi-fragmentation of the total system (IMF production) [1–3].
6. CoMD II—Total angular momentum conservation

In this section we will discuss the last term R added to the equations of motion (9). As mentioned in

the introduction, the presence of the strong repulsive and short-range nuclear interaction, represented

through the term C, gives rise to another problem. Classical turning points make complications in the

numerical integration of the equations of motion. On the other hand, from a quantum point of view

we have the lack of the trajectory concept. These circumstances could make it appropriate to simulate



Fig. 4. Same as Fig. 3 but for the CoMD model [4].
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the effect of the nucleon–nucleon short-range repulsion (hard core) through elastic scattering process (and

inelastic at the higher energies). In this case, two nucleons, according to the related cross-section, if close
enough each other, can change their relative momentum, changing therefore the direction of motion. In

this way, there is no correlation between the position of nucleons and the scattering angle and the quan-

tum effect related to the finite spreading of the nucleon–nucleon wave function (branching) can be sim-

ulated. On the other hand, the loss of correlation generates a process that does not preserve the relative

total angular momentum of the nucleons. Therefore the simulation globally violates the conservation law

related to the total angular momentum L of the system (the angular momentum contribution related to

the nucleon intrinsic spin is fixed) as happens in others N-body microscopic approach. This can be easily

seen through the following relation valid for a scattering process in the centre of mass of the generic
nucleon couple 1 and 2:
Lin
r ¼ ðr1 � r2Þ � pinr ! ðr1 � r2Þ � pfnr ¼ Lfn

r

and
pfnr
�� �� ¼ pinr

�� ��pfnr 6¼ pinr ! Lin
r 6¼ Lfn

r :
This problem can become prominent at high energy when the collision regime is important and, in gen-
eral, in all the microscopic approaches, like in the CoMD model, that use random forces. In particular, in

CoMD model, the problem is present also because we use multiple scattering processes to satisfy the Pauli

prescriptions.

Before illustrating the transformation R used in the general case, we briefly discuss what we call a ‘‘triv-

ial’’ solution to the problem.

The conservation of the angular momentum can be easily restored at a microscopic level if
pfnr � pinr ¼ ðr1 � r2Þ
jðr1 � r2Þj

Dp:
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This means that the change of the relative momenta in the scattering process is parallel to the relative

distance between the nucleons. This choice restores a one to one correspondence between the impact

parameter b of the nucleon–nucleon collision and the scattering angle h. In particular the related angular

distribution for the scattering process is
dr
dX

¼ b
sinðhÞ

db
dh

����
���� ¼ 1

4
R2
int: ð12Þ
We have therefore an isotropic behavior.

We do not follow this solution because it appears quite restrictive for different reasons: the restoring of

the one to one correspondence destroys the so-called ‘‘branching’’ effect; moreover, the behavior of the

angular distribution for the scattering process is fixed. Therefore, in general it can deviate from the behavior

suggested by the data related to the free nucleon–nucleon scattering or from more complicated calculations

that take in to account in medium effects. In such cases, in fact the angular distribution can show marked

anisotropy. Finally, if we fix the relation between b and h we do not have enough degree of freedom to sat-

isfy the Pauli requirement through the multiple scattering processes given by the transformation P.
These motivations therefore orientated us to choose a solving strategy that acts at a collective level. We

search for a transformation R which involves the ensemble C of nucleons which during a given time step

have undergone a collision process. In other words, if possible, we do not want to assign a particular role to

few nucleons. This ensemble of nucleons are characterized by the position of the center of mass (c.m.) in

phase space with coordinates rC, pC. In the c.m. reference system the total kinetic energy will be indicated

by TC. In the following all the nucleon coordinates belonging to the ensemble C are computed in this ref-

erence system. The related algorithm can be summarized in the following steps:

Step I

We indicate with DL the dissipated angular momentum in the considered time step and we search for a

collective angular velocity vector x such that:
DL ¼ Ix; ð13Þ

where I represents the inertia tensor of the ensemble C. With the collective angular velocity x we correct the
momenta of the particles:
p0k ¼ pk þ mrk � x; k � C: ð14Þ

This first step restore the total angular momentum conservation but it will change (just due to the rota-

tional energy) the total energy of the system and in particular the value of TC. Therefore, in the next step,

we have to change the momenta to restore energy conservation without changing the total angular momen-

tum. Thence we perform only a scaling a of the radial momenta. Moreover the total momentum pC has to
remain unchanged.

Step II
p00k ¼ p0k þ a
ðp0krkÞrk

r2k
; ð15Þ

p000k ¼ p00k �
X
k

p00k
NC

; ð16Þ

X
k

p2000k

2m
� T C ¼ �; ð17Þ
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with k � C. The problem posed by the above three equations implies an iterative procedure depending on

the scaling parameter a to minimize the absolute value of �. In about 98% of the cases, this procedure solves

the problem obtaining min(j�j) = 0 within the computer accuracy. In the other cases, starting from the pre-

vious step when the condition for min(j�j) has been determined, we sort three particles of the ensemble C in

such way to solve the algebraic system given by seven equations: three scalar equations for total spin, three
for total momentum conservation and one for the total energy, without further scaling hypothesis.

The above procedure does not work if the number of particles belonging to the ensemble C is less than 3.

In this quite improbable case, we include in the ensemble C the necessary number of particles (which have

not experienced a collision process in the considered time step) choosing them between the nearest particles

to the c.m. position rC of the ensemble C.

In the method illustrated, we have supposed that our system of N-particles is compact. That is the par-

ticles of C belong only to one cluster of nucleons. This is not the case when, for example, we have the multi-

break up of the hot compound system. In this case, many clusters can be produced and, in a short time, they
will be far apart. If we include in the ensemble C all the colliding particles belonging to the different clusters,

the procedure described will introduce unphysical long-range interactions.

Therefore in the common situation the transformation R has to be applied to all the ensembles

C, C 0, C00, . . . belonging to the different clusters. This means that in the CoMD II code the routine that de-

fines the topology of the system (based on a coalescence model) has to be called at all time steps. This last

request can be implemented by use of the modern parallel program architecture.

We conclude this section by comparing in Fig. 5 the time dependence of the absolute value of the total

angular momentum computed for one simulation of the collision 40Ca + 40Ca. The energy and the impact
parameter are Elab = 220 MeV and b = 2 fm, respectively. The dotted line represents the results obtained

with the first version of the CoMD model while the continuous line is from the last version, CoMD II,

implemented with the transformation R.
Fig. 5. Absolute value of the total angular momentum as function of time for one realizations of the 40Ca + 40Ca system at

Ecm = 110 MeV and impact parameter b = 2 fm. In the figure we show the results of the model calculations with the use of the R

transformation (CoMD II) (continuous line) and without (dashed line).
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7. An illustrative example—40Ca + 40Ca fusion excitation function

Practically in all the nuclear processes induced by heavy ion collisions, the role played by the angular

momentum is crucial in to determine the main behavior of the reaction mechanism. On the other hand, also

from a more static point of view, for a given temperature, the stability of the nuclear liquid drop depends on
the amount of its spin, which strongly affects also the particle decay. A typical example is the case of nuclear

fission (or more generally the binary decay) which for most nuclei is hindered at zero temperature and zero

spin but it can happen above some critical L value. Obviously, these effects can modify the fusion cross-

section that represents, in some sense, the complementary process to the binary break-up of the compound

system.

In Fig. 6(a) we show the excitation function of the fusion cross-section for the 40Ca + 40Ca system. From

the figure, it is possible to see, at the higher energy, about 30% reduction of the fusion cross-section when

the L conservation law is taken into account. The fusion cross-section has been evaluated by taking in to
account the cross-section for heavy residues production. The crossed points represent data from [9] while

the squared ones are data from [10]. This lowering is substantially due to about 40–50% increase of the bin-

ary process for the L conserved case (see Fig. 6(b)).

We conclude this section by observing that in general in microscopic approaches a great effort is made in

trying to obtain the right predictions for the fusion cross-section. These efforts involve, generally, a search

for the best parameters of the effective interaction (especially the ones that describe the surface term) able to

produce the measured value. Work is in progress in fact to reproduce the point at Ecm = 150 MeV even if,
(a)

(b)

Fig. 6. (a) Fusion cross-section as function of the c.m. incident energy for the 40Ca + 40Ca system. The filled circles indicate the results

obtained with CoMD II while the empty circles represent the results obtained without the transformation R. The crossed and squared

points represent experimental data taken from [9] and [10], respectively. (b) At Ecm = 130 MeV we show the probability distribution as

function of the impact parameter b for dissipative binary reactions in the above two cases.
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apart from this point, we note for the investigated system the lack of others fusion cross-section measure-

ments in this energy region.

Nevertheless, the results shown in this section highlight how it is quite important to work in a scheme in

which the total angular momentum is conserved before reaching any kind of conclusion about the param-

eters that better describe the effective nucleon–nucleon interaction.
8. Conclusive remarks

In this paper we have shown a recent development of the constraint dynamics, introduced in [4], in mod-

eling the N-body approach in nuclear physics. The constrained molecular dynamics model is based on the

use of impulsive forces that constrain the semi-classical dynamics to satisfy the Pauli principle and, in

CoMD II, also the total angular momentum conservation. Satisfaction of this quit fundamental law has
been undertaken in other semi-classical microscopic approaches in which the hard-core repulsive interac-

tion is simulated through nucleon–nucleon collision processes. The choice of this strategy corresponds to

the usage of transformations on the nucleon coordinates in momentum space which allow to work with

an N2 dimensionality, imposed by the two-body character of the used effective interaction, rather that a

N4 dimensionality as prescribed by an anti-symmetric dynamics. This choice has the obvious advantage

to shorten drastically the computing time, keeping the essential features related to the fermionic dynamics.

Finally, as an example, we have shown the pronounced differences in the fusion cross-section excitation

function computed with the two CoMD versions due to the restoration of the total angular momentum
conservation law in CoMD II.
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